Tag: gradle

The Power of Gradle Kotlin DSL

The Power of Gradle Kotlin DSL

-The following is based on Gradle 4.3.1-

A few weeks ago I started migrating most of my Groovy-based gradle.build scripts to Kotlin-backed gradle.build.kts scripts using the Kotlin DSL. Why would I do that? Kotlin is my language of choice and I love the idea of using a single language to do all my work. I never learned programming with Groovy and only know the bloody basics, which always makes me think: “This can’t be the best way to do things…”. Kotlin, on the other hand, is a language I use on a daily basis and therefore I know how to use the language appropriately. Additionally, Kotlin is a statically-typed language, whereas Groovy isn’t. IDEs are having hard times offering code completion and error detection at compile time when a Groovy build script is being edited. As for the Kotlin DSL, this isn’t true. Especially IntelliJ knows how to help us with Kotlin development, even in gradle.build.kts files. All these reasons made me take a deeper look at the new style Gradle offers.

Minor Impediments

It can sometimes be a bit tedious to rewrite your gradle.build into gradle.build.kts files, especially in the IDE with all its caches malfunctioning during that process. I often had to reopen my project or even reimport it before IntelliJ understood what was going on. It also often helps to use “Refresh all Gradle projects” button in the Gradle view.

Let’s take a look

The following snippet shows the first part of a working example. It was taken from one of my projects, which is a Kotlin web application based on the Vert.x toolkit. Learn more about the technology in this post I wrote earlier.

The script first defines a few global variables, mostly containing version numbers, which are used throughout the build file. Next, we can observe the plugins block that simply defines a few plugins used for the build. Most importantly, the Kotlin Gradle plugin for JVM applications is included, which we can do with the DSL-specific function kotlin(module: String), that takes its module argument and appends it to "org.jetbrains.kotlin.", which then is put into the id(plugin: String) method, the default api for applying plugins. Last but not least, we can see the listing of dependencies, which again provides a kotlin convenience method we can use to reduce redundant declarations. A similar approach can be seen with the definition of the io.vertx dependencies. In order to only once write the "io.vertx.vertx" String, which is part of every single Vert.x dependency, it’s used as a receiver of let. A first example of real idiomatic code within the build script.


//taken from the `plugins` defined later in the file
val kotlinVersion = plugins.getPlugin(KotlinPluginWrapper::class.java).kotlinPluginVersion
val kotlinCoroutinesVersion = "0.19.3"

val vertxVersion = "3.5.0" //
val nexusRepo = "http://x.x.x.x:8080/nexus/content/repositories/releases"

plugins {

dependencies {
    compile(kotlin("stdlib", kotlinVersion))
    compile(kotlin("reflect", kotlinVersion))

    "io.vertx:vertx".let { v ->


    testCompile(kotlin("test", kotlinVersion))
    testCompile(kotlin("test-junit", kotlinVersion))

// Part 2

The second part of the example project starts with defining repositories, which are used to find dependencies and plugins declared earlier. Again, we see an example of simplifying the code with the help of using the language: The custom Maven repositories are defined using the functional method forEach, and thus shortens the boilerplate. After that, the plugins are being configured, which for instance is necessary for enabling coroutine support or defining the application properties. Finally, we can observe a sequence of task configurations that control the behavior of single build steps, e.g. tests.

// ...Part 1

repositories {
            nexusRepo).forEach {
        maven { url = uri(it) }

kotlin {
    experimental.coroutines = Coroutines.ENABLE

application {
    group = "de.swirtz"
    version = "1.0.0"
    applicationName = "gradle-kotlindsl"
    mainClassName = "de.swirtz.ApplicationKt"

publishing {
    repositories {
        maven {
            url = uri(nexusRepo)
    if (!project.hasProperty("jenkins")) {
        println("Property 'jenkins' not set. Publishing only to MavenLocal")
    } else {
        (publications) {
            "maven"(MavenPublication::class) {

tasks {
    withType<KotlinCompile> {
        kotlinOptions.jvmTarget = "1.8"

    withType<Test> {
        testLogging.showStandardStreams = true

    withType<Jar> {
        manifest {
            attributes["Main-Class"] = application.mainClassName
        from(configurations.runtime.map { if (it.isDirectory) it else zipTree(it) })

    withType<GradleBuild> {

The Result

We’ve seen a rather simple build script written with the Gradle Kotlin DSL. I made use of a few idiomatic Kotlin functions in order to show the power of such .kts files. Especially for Kotlin developers, it can make much sense to completely switch to the shown approach. IntelliJ does support the creation of new build.gradle.kts files by default when you open the “New” option in “Project” view.

There will be situations, which make you want to ask somebody for help. I recommend reaching out directly in the corresponding Kotlin Slack channel: gradle.

I hope I could inspire you to give it a try! Good Luck 🙂

The whole script as a Gist

Please follow and like me 🙂
Setup Vert.x Application written in Kotlin (Gradle Build)

Setup Vert.x Application written in Kotlin (Gradle Build)

I decided to write a Vert.x application in combination with Kotlin in a simple example because I’m really interested in Reactive Programming and love to use Kotlin. In this post, I will give some basic information on Vert.x as a tool set for writing reactive applications on the JVM and also introduce Kotlin a bit. In the end, I want to demonstrate how this application can be set up in Gradle.

Read More Read More

Please follow and like me 🙂

Enjoy this blog? Please spread the word :)